Schriftliche Division | Mathebibel (2023)

In diesem Kapitel besprechen wir die schriftliche Division. Voraussetzung ist, dass du die schriftliche Subtraktion sowie das Einmaleins beherrscht.

Inhaltsverzeichnis

Erforderliches Vorwissen

  • Division

Beispiel mit einstelligem Divisor (Stufe 1)

Beispiel 1

Berechne $84 : 4$.

Aufgabe abschreiben

$$ \begin{array}{cccc} 8 & 4 & : 4 & = \end{array} $$

Erste Division

Schritt 1 von 4

Im ersten Rechenschritt betrachten wir ausschließlich die erste Zahl des Dividenden und fragen uns: Wie oft passt die ${\color{blue}4}$ in die ${\color{blue}8}$?

Die Antwort lautet: ${\color{red}2}$ Mal.Diese Zahl notieren wir rechts neben dem Gleichheitszeichen.

$$ \begin{array}{cccc} {\color{blue}8}& 4 & :{\color{blue}4} &= {\color{red}2} \end{array} $$

Schritt 2 von 4

Jetzt überprüfen wir, ob bei dieser Division ein Rest vorhanden ist.

Dazu rechnen wir zunächst: ${\color{blue}2}\cdot{\color{blue}4}={\color{red}8}$

Die ${\color{red}8}$ schreiben wir unter die erste Zahl des Dividenden.

$$ \begin{array}{cccc} 8& 4 & :{\color{blue}4} &= {\color{blue}2} \\ \hline {\color{red}8}& && \end{array} $$

Schritt 3 von 4

Jetzt ziehen wir von den ersten Zahl des Dividenden die eben berechnete Zahl ab.

Es gilt: ${\color{blue}8}-{\color{blue}8}={\color{red}0}$

Die ${\color{red}0}$ sagt uns, dass bei der ersten Division kein Rest vorhanden ist.

$$ \begin{array}{cccc} {\color{blue}8}& 4 & :4 &= 2\\ \hline {\color{blue}8}& && \\ -& && \\ {\color{red}0}& && \\ \end{array} $$

Schritt 4 von 4

Zum Abschluss der ersten Division holen wir die zweite Zahl des Dividenden in die letzte Zeile.

$$ \begin{array}{cccc} 8&{\color{blue}4} & :4 &= 2\\ \hline 8& && \\ -& && \\ 0&{\color{red}4}&& \\ \end{array} $$

Zweite Division

Schritt 1 von 4

Wie oft passt die ${\color{blue}4}$ in die ${\color{blue}4}$?

Die Antwort lautet: ${\color{red}1}$ Mal.Diese Zahl notieren wir rechts neben dem Gleichheitszeichen.

$$ \begin{array}{cccc} 8&4 & :{\color{blue}4}&= 2{\color{red}1}\\ \hline 8& && \\ -& && \\ 0&{\color{blue}4}&& \\ \end{array} $$

Schritt 2 von 4

Jetzt überprüfen wir wieder, ob ein Rest vorhanden ist.

Dazu rechnen wir zunächst: ${\color{blue}1}\cdot{\color{blue}4}={\color{red}4}$

Die ${\color{red}4}$ schreiben wir in eine neue Zeile in der Spalte der zweiten Zahl des Dividenden.

$$ \begin{array}{cccc} 8&4 & :{\color{blue}4}&= 2{\color{blue}1}\\ \hline 8& && \\ 0&4&& \\ &{\color{red}4}&& \\ \end{array} $$

Schritt 3 von 4

Wir rechnen: ${\color{blue}4}-{\color{blue}4}={\color{red}0}$

Die ${\color{red}0}$ sagt uns, dass bei der zweiten Division kein Rest vorhanden ist.

$$ \begin{array}{cccc} 8&4 & :4&= 21\\ \hline 8& && \\ -& && \\ 0&{\color{blue}4}&& \\ &{\color{blue}4}&& \\ &-&& \\ &{\color{red}0}&& \\ \end{array} $$

Schritt 4 von 4

Da es keine weiteren Stellen gibt, entfällt dieser Schritt.

Die Rechnung ist somit beendet.

(Video) Schriftliches Dividieren - EINFACH ERKLÄRT | Mathematik | | Lehrerschmidt - einfach erklärt!

Ergebnis ablesen

Die Zahl rechts neben dem Gleichheitszeichen entspricht dem Ergebnis der Division.

$$ \begin{array}{cccc} 8&4 & :4&={\color{red}2}{\color{red}1}\\ \hline 8& && \\ -& && \\ 0&4&& \\ &4&& \\ &-&& \\ &0&& \\ \end{array} $$

Beispiel mit einstelligem Divisor (Stufe 2)

Beispiel 2

Berechne $92 : 4$.

Aufgabe abschreiben

$$ \begin{array}{cccc} 9 & 2 & : 4 & = \end{array} $$

Erste Division

Schritt 1 von 4

Im ersten Rechenschritt betrachten wir ausschließlich die erste Zahl des Dividenden und fragen uns: Wie oft passt die ${\color{blue}4}$ in die ${\color{blue}9}$?

Die Antwort lautet: ${\color{red}2}$ Mal.Diese Zahl notieren wir rechts neben dem Gleichheitszeichen.

$$ \begin{array}{cccc} {\color{blue}9}& 2 & :{\color{blue}4} &= {\color{red}2} \end{array} $$

Schritt 2 von 4

Jetzt überprüfen wir, ob bei dieser Division ein Rest vorhanden ist.

Dazu rechnen wir zunächst: ${\color{blue}2}\cdot{\color{blue}4}={\color{red}8}$

Die ${\color{red}8}$ schreiben wir unter die erste Zahl des Dividenden.

$$ \begin{array}{cccc} 9& 2 & :{\color{blue}4} &= {\color{blue}2} \\ \hline {\color{red}8}& && \end{array} $$

Schritt 3 von 4

Jetzt ziehen wir von den ersten Zahl des Dividenden die eben berechnete Zahl ab.

Es gilt: ${\color{blue}9}-{\color{blue}8}={\color{red}1}$

Die ${\color{red}1}$ entspricht dem Rest der ersten Division.

$$ \begin{array}{cccc} {\color{blue}9}& 2 & :4 &= 2\\ \hline {\color{blue}8}& && \\ -& && \\ {\color{red}1}& && \\ \end{array} $$

Schritt 4 von 4

Zum Abschluss der ersten Division holen wir die zweite Zahl des Dividenden in die letzte Zeile.

$$ \begin{array}{cccc} 9&{\color{blue}2} & :4 &= 2\\ \hline 8& && \\ -& && \\ 1&{\color{red}2}&& \\ \end{array} $$

Zweite Division

Schritt 1 von 4

Wie oft passt die ${\color{blue}4}$ in die ${\color{blue}1}{\color{blue}2}$?

Die Antwort lautet: ${\color{red}3}$ Mal.Diese Zahl notieren wir rechts neben dem Gleichheitszeichen.

$$ \begin{array}{cccc} 9&2 & :{\color{blue}4}&= 2{\color{red}3}\\ \hline 8& && \\ -& && \\ {\color{blue}1}&{\color{blue}2}&& \\ \end{array} $$

Schritt 2 von 4

Jetzt überprüfen wir wieder, ob ein Rest vorhanden ist.

Dazu rechnen wir zunächst: ${\color{blue}3}\cdot{\color{blue}4}={\color{red}1}{\color{red}2}$

Die ${\color{red}1}{\color{red}2}$ schreiben wir in eine neue Zeile in der Spalte der zweiten Zahl des Dividenden.

$$ \begin{array}{cccc} 9&2 & :{\color{blue}4}&= 2{\color{blue}3}\\ \hline 8& && \\ 1&2&& \\ {\color{red}1}&{\color{red}2}&& \\ \end{array} $$

Schritt 3 von 4

Wir rechnen: ${\color{blue}1}{\color{blue}2}-{\color{blue}1}{\color{blue}2}={\color{red}0}$

Die ${\color{red}0}$ sagt uns, dass bei der zweiten Division kein Rest vorhanden ist.

$$ \begin{array}{cccc} 9&2 & :4&= 23\\ \hline 8& && \\ -& && \\ {\color{blue}1}&{\color{blue}2}&& \\ {\color{blue}1}&{\color{blue}2}&& \\ &-&& \\ &{\color{red}0}&& \\ \end{array} $$

Schritt 4 von 4

Da es keine weiteren Stellen gibt, entfällt dieser Schritt.

Die Rechnung ist somit beendet.

Ergebnis ablesen

(Video) schriftliche Division mit zweistelligem Divisor | Lehrerschmidt - einfach erklärt!

Die Zahl rechts neben dem Gleichheitszeichen entspricht dem Ergebnis der Division.

$$ \begin{array}{cccc} 9&2 & :4&={\color{red}2}{\color{red}3}\\ \hline 8& && \\ -& && \\ 1&2&& \\ 1&2&& \\ &-&& \\ &0&& \\ \end{array} $$

Beispiel mit einstelligem Divisor (Stufe 3)

Beispiel 3

Berechne $93 : 4$.

Aufgabe abschreiben

$$ \begin{array}{cccc} 9 & 3 & : 4 & = \end{array} $$

Erste Division

Schritt 1 von 4

Im ersten Rechenschritt betrachten wir ausschließlich die erste Zahl des Dividenden und fragen uns: Wie oft passt die ${\color{blue}4}$ in die ${\color{blue}9}$?

Die Antwort lautet: ${\color{red}2}$ Mal.Diese Zahl notieren wir rechts neben dem Gleichheitszeichen.

$$ \begin{array}{cccc} {\color{blue}9}& 3 & :{\color{blue}4} &= {\color{red}2} \end{array} $$

Schritt 2 von 4

Jetzt überprüfen wir, ob bei dieser Division ein Rest vorhanden ist.

Dazu rechnen wir zunächst: ${\color{blue}2}\cdot{\color{blue}4}={\color{red}8}$

Die ${\color{red}8}$ schreiben wir unter die erste Zahl des Dividenden.

$$ \begin{array}{cccc} 9& 3 & :{\color{blue}4} &= {\color{blue}2} \\ \hline {\color{red}8}& && \end{array} $$

Schritt 3 von 4

Jetzt ziehen wir von den ersten Zahl des Dividenden die eben berechnete Zahl ab.

Es gilt: ${\color{blue}9}-{\color{blue}8}={\color{red}1}$

Die ${\color{red}1}$ entspricht dem Rest der ersten Division.

$$ \begin{array}{cccc} {\color{blue}9}& 3 & :4 &= 2\\ \hline {\color{blue}8}& && \\ -& && \\ {\color{red}1}& && \\ \end{array} $$

Schritt 4 von 4

Zum Abschluss der ersten Division holen wir die zweite Zahl des Dividenden in die letzte Zeile.

$$ \begin{array}{cccc} 9&{\color{blue}3} & :4 &= 2\\ \hline 8& && \\ -& && \\ 1&{\color{red}3}&& \\ \end{array} $$

Zweite Division

Schritt 1 von 4

Wie oft passt die ${\color{blue}4}$ in die ${\color{blue}1}{\color{blue}3}$?

Die Antwort lautet: ${\color{red}3}$ Mal.Diese Zahl notieren wir rechts neben dem Gleichheitszeichen.

$$ \begin{array}{cccc} 9&3 & :{\color{blue}4}&= 2{\color{red}3}\\ \hline 8& && \\ -& && \\ {\color{blue}1}&{\color{blue}3}&& \\ \end{array} $$

Schritt 2 von 4

Jetzt überprüfen wir wieder, ob ein Rest vorhanden ist.

Dazu rechnen wir zunächst: ${\color{blue}3}\cdot{\color{blue}4}={\color{red}1}{\color{red}2}$

Die ${\color{red}1}{\color{red}2}$ schreiben wir in eine neue Zeile in der Spalte der zweiten Zahl des Dividenden.

$$ \begin{array}{cccc} 9&3 & :{\color{blue}4}&= 2{\color{blue}3}\\ \hline 8& && \\ 1&3&& \\ {\color{red}1}&{\color{red}2}&& \\ \end{array} $$

Schritt 3 von 4

Wir rechnen: ${\color{blue}1}{\color{blue}3}-{\color{blue}1}{\color{blue}2}={\color{red}1}$

Die ${\color{red}1}$ entspricht dem Rest der zweiten Division.

$$ \begin{array}{cccc} 9&3 & :4&= 23\\ \hline 8& && \\ -& && \\ {\color{blue}1}&{\color{blue}3}&& \\ {\color{blue}1}&{\color{blue}2}&& \\ &-&& \\ &{\color{red}1}&& \\ \end{array} $$

Schritt 4 von 4

Da es keine weiteren Stellen gibt, entfällt dieser Schritt.

Die Rechnung ist somit beendet.

Ergebnis ablesen

Die Zahl rechts neben dem Gleichheitszeichen entspricht dem Ergebnis der Division.

(Video) Schriftliche Division

Interessant ist, dass bei dieser Aufgabe ein Rest von $1$ bleibt.

$$ \begin{array}{cccc} 9&3 & :4&={\color{red}2}{\color{red}3}\\ \hline 8& && \\ -& && \\ 1&3&& \\ 1&2&& \\ &-&& \\ &1&& \\ \end{array} $$

Beispiel mit einstelligem Divisor (Stufe 4)

Beispiel 4

Berechne $32 : 4$.

Aufgabe abschreiben

$$ \begin{array}{cccc} 3 & 2 & : 4 & = \end{array} $$

Erste Division

Schritt 1 von 4

Im ersten Rechenschritt betrachten wir ausschließlich die erste Zahl des Dividenden und fragen uns: Wie oft passt die ${\color{blue}4}$ in die ${\color{blue}3}$?

Die Antwort lautet: ${\color{red}0}$ Mal.

Da die ${\color{blue}4}$ kein Mal in die ${\color{blue}3}$ passt, erweitern wir die Betrachtung auf die ersten beiden Zahlen des Dividenden und fragen uns: Wie oft passt die ${\color{blue}4}$ in die ${\color{blue}3}{\color{blue}2}$?

Die Antwort lautet: ${\color{red}8}$ Mal.Diese Zahl notieren wir rechts neben dem Gleichheitszeichen.

1. Versuch

$$ \begin{array}{cccc} {\color{blue}3}& 2 & :{\color{blue}4} &= \end{array} $$

2. Versuch

$$ \begin{array}{cccc} {\color{blue}3}&{\color{blue}2} & :{\color{blue}4} &= {\color{red}8} \end{array} $$

Schritt 2 von 4

Jetzt überprüfen wir, ob bei dieser Division ein Rest vorhanden ist.

Dazu rechnen wir zunächst: ${\color{blue}8}\cdot{\color{blue}4}={\color{red}3}{\color{red}2}$

Die ${\color{red}3}{\color{red}2}$ schreiben wir unter die waagrechte Linie.

$$ \begin{array}{cccc} 3& 2 & :{\color{blue}4} &= {\color{blue}8} \\ \hline {\color{red}3}&{\color{red}2}&& \end{array} $$

Schritt 3 von 4

Jetzt ziehen wir von den ersten beiden Zahlen des Dividenden die eben berechnete Zahl ab.

Es gilt: ${\color{blue}3}{\color{blue}2}-{\color{blue}3}{\color{blue}2}={\color{red}0}$

Die ${\color{red}0}$ sagt uns, dass bei dieser Division kein Rest vorhanden ist.

$$ \begin{array}{cccc} {\color{blue}3}&{\color{blue}2}& :4 &= 8 \\ \hline {\color{blue}3}&{\color{blue}2}&& \\ -&-& & & \\ &{\color{red}0}& & \end{array} $$

Schritt 4 von 4

Da es keine weiteren Stellen gibt, entfällt dieser Schritt.

Die Rechnung ist somit beendet.

Ergebnis ablesen

Die Zahl rechts neben dem Gleichheitszeichen entspricht dem Ergebnis der Division.

$$ \begin{array}{cccc} 3&2& :4 &={\color{red}8} \\ \hline 3&2&& \\ -&-& & & \\ &0& & \end{array} $$

In den bisherigen Beispielen haben wir uns ausschließlich Divisionen mit einstelligem Divisor angeschaut. Es ist an der Zeit diese Einschränkung aufzuheben.

Beispiel mit zweistelligem Divisor

Beispiel 5

Berechne $144 : 12$.

Aufgabe abschreiben

$$ \begin{array}{ccccc} 1 & 4 & 4 & : 12 & = \end{array} $$

Erste Division

Schritt 1 von 4

Im ersten Rechenschritt betrachten wir ausschließlich die erste Zahl des Dividenden und fragen uns: Wie oft passt die ${\color{blue}1}{\color{blue}2}$ in die ${\color{blue}1}$?

(Video) Schriftliche Division mit dreistelligen Zahlen | www.gut-erklärt.de

Die Antwort lautet: ${\color{red}0}$ Mal.

Da die ${\color{blue}1}{\color{blue}2}$ kein Mal in die ${\color{blue}1}$ passt, erweitern wir die Betrachtung auf die ersten beiden Zahlen des Dividenden und fragen uns: Wie oft passt die ${\color{blue}1}{\color{blue}2}$ in die ${\color{blue}1}{\color{blue}4}$?

Die Antwort lautet: ${\color{red}1}$ Mal.Diese Zahl notieren wir rechts neben dem Gleichheitszeichen.

1. Versuch

$$ \begin{array}{ccccc} {\color{blue}1}& 4 & 4& :{\color{blue}1}{\color{blue}2} &= \end{array} $$

2. Versuch

$$ \begin{array}{ccccc} {\color{blue}1}&{\color{blue}4}& 4& :{\color{blue}1}{\color{blue}2} &= {\color{red}1} \end{array} $$

Schritt 2 von 4

Jetzt überprüfen wir, ob bei dieser Division ein Rest vorhanden ist.

Dazu rechnen wir zunächst: ${\color{blue}1}\cdot{\color{blue}1}{\color{blue}2}={\color{red}1}{\color{red}2}$

Die ${\color{red}1}{\color{red}2}$ schreiben wir unter die waagrechte Linie.

$$ \begin{array}{ccccc} 1&4& 4& :{\color{blue}1}{\color{blue}2} &={\color{blue}1} \\ \hline {\color{red}1}&{\color{red}2}& & & \end{array} $$

Schritt 3 von 4

Jetzt ziehen wir von den ersten beiden Zahlen des Dividenden die eben berechnete Zahl ab.

Es gilt: ${\color{blue}1}{\color{blue}4}-{\color{blue}1}{\color{blue}2}={\color{red}2}$

Die ${\color{red}2}$ entspricht dem Rest der ersten Division.

$$ \begin{array}{ccccc} {\color{blue}1}&{\color{blue}4}&4& :12 &= 1 \\ \hline {\color{blue}1}&{\color{blue}2}&& \\ -&-& & & \\ &{\color{red}2}& & \end{array} $$

Schritt 4 von 4

Zum Abschluss der ersten Division holen wir die nächste des Dividenden in die letzte Zeile.

$$ \begin{array}{ccccc} 1&4&{\color{blue}4}& :12 &= 1 \\ \hline 1&2&& \\ -&-& & & \\ &2&{\color{red}4}& \end{array} $$

Zweite Division

Schritt 1 von 4

Wie oft passt die ${\color{blue}1}{\color{blue}2}$ in die ${\color{blue}2}{\color{blue}4}$?

Die Antwort lautet: ${\color{red}2}$ Mal.Diese Zahl notieren wir rechts neben dem Gleichheitszeichen.

$$ \begin{array}{ccccc} 1&4&4& :{\color{blue}1}{\color{blue}2} &= 1{\color{red}2} \\ \hline 1&2&& \\ -&-& & & \\ &{\color{blue}2}&{\color{blue}4}& \end{array}$$

Schritt 2 von 4

Jetzt überprüfen wir wieder, ob ein Rest vorhanden ist.

Dazu rechnen wir zunächst: ${\color{blue}2}\cdot{\color{blue}1}{\color{blue}2}={\color{red}2}{\color{red}4}$

Die ${\color{red}2}{\color{red}4}$ schreiben wir in eine neue Zeile in der Spalte der zweiten Zahl des Dividenden.

$$ \begin{array}{ccccc} 1&4&4& :{\color{blue}1}{\color{blue}2} &= 1{\color{blue}2} \\ \hline 1&2&& \\ -&-& & & \\ &2&4&\\ & {\color{red}2}&{\color{red}4}& \end{array} $$

Schritt 3 von 4

Wir rechnen: ${\color{blue}2}{\color{blue}4}-{\color{blue}2}{\color{blue}4}={\color{red}0}$

Die ${\color{red}0}$ sagt uns, dass bei der zweiten Division kein Rest vorhanden ist.

$$ \begin{array}{ccccc} 1&4&4& :12 &= 12\\ \hline 1&2&& \\ -&-& & & \\ &{\color{blue}2}&{\color{blue}4}&\\ &{\color{blue}2}&{\color{blue}4}& \\ &-&-& \\ & &{\color{red}0}& \end{array} $$

Schritt 4 von 4

Da es keine weiteren Stellen gibt, entfällt dieser Schritt.

Die Rechnung ist somit beendet.

Ergebnis ablesen

Die Zahl rechts neben dem Gleichheitszeichen entspricht dem Ergebnis der Division.

$$ \begin{array}{ccccc} 1&4&4& :12 &= {\color{red}1}{\color{red}2} \\ \hline 1&2&& \\ -&-& & & \\ &2&4&\\ &2&4& \\ &-&-& \\ & &0& \end{array} $$

Schriftliche Division mehrerer Zahlen

Im Gegensatz zur schriftlichen Addition und zur schriftlichen Subtraktion können wir in einem Schritt nur maximal zwei Zahlen miteinander dividieren. Wenn wir mehr Zahlen dividieren wollen, müssen wir das Verfahren wiederholen.

Beispiel 6

Wie viel ist $600 : 12 : 10$?

In der ersten schriftlichen Division rechnet man $600 : 12$.

In der zweiten schriftlichen Division rechnet man das Ergebnis der ersten Division geteilt durch $10$.

Videos

1. Einführung schriftliche Division - Teil 1
(Klasse 4)
2. D.4: Schriftliche Division mit einem zweistelligen (2-stelligen) Divisor (Grundschule)
(OberFuchs)
3. schriftliche Division 5
(Mrs Bro)
4. Tutorial: Schriftliche Division
(Lerntutor)
5. Schriftliche Division mit 2stelligem Divisor (Schriftlich teilen durch 2-stellige Zahl)
(Einfach Schule)
6. Schriftliche Division - Schriftliches Teilen || Klasse 5 ★ Übung 2
(StrandMathe)
Top Articles
Latest Posts
Article information

Author: Sen. Ignacio Ratke

Last Updated: 02/15/2023

Views: 5571

Rating: 4.6 / 5 (56 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Sen. Ignacio Ratke

Birthday: 1999-05-27

Address: Apt. 171 8116 Bailey Via, Roberthaven, GA 58289

Phone: +2585395768220

Job: Lead Liaison

Hobby: Lockpicking, LARPing, Lego building, Lapidary, Macrame, Book restoration, Bodybuilding

Introduction: My name is Sen. Ignacio Ratke, I am a adventurous, zealous, outstanding, agreeable, precious, excited, gifted person who loves writing and wants to share my knowledge and understanding with you.